Método del Gradiente
Un modelo de Programación Lineal (PNL) es aquel donde las variables de decisión se expresan como funciones no lineales ya sea en la función objetivo y/o restricciones de un modelo de optimización. Esta característica particular de los modelos no lineales permite abordar problemas donde existen economías o deseconomías de escala o en general donde los supuestos asociados a la proporcionalidad no se cumplen.
En este sentido el método del gradiente (conocido también como método de Cauchy o del descenso más pronunciado) consiste en un algortimo específico para la resolución de modelos de PNL sin restricciones, perteneciente a la categoría de algoritmos generales de descenso, donde la búsqueda de un mínimo esta asociado a la resolución secuencial de una serie de problemas unidimensionales.
Los pasos asociados a la utilización del método del gradiente o descenso más pronunciado consiste en:
Ejemplo del Método del Gradiente
Considere el siguiente modelo de programación no lineal sin restricciones. Aplique 2 iteraciones del método del gradiente a partir del punto inicial X0=(1,1).
Luego de realizar la segunda iteración se verifica que se cumplen las condiciones necesarias de primer orden (d1=(0,0)). Adicionalmente se puede comprobar que la función objetivo resulta ser convexa y en consecuencia las condiciones de primer orden resultan ser suficientes para afirmar que la coordenada (X1,X2)=(-2,1) es el óptimo o mínimo global del problema.